Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-2229192

ABSTRACT

BACKGROUND: The ongoing COVID-19 pandemic significantly burdens hospitals and other healthcare facilities. Therefore, understanding the entry and transmission of SARS-CoV-2 is critical for effective prevention and preparedness measures. We performed surveillance and analysis of testing and transmission of SARS-CoV-2 infections in a tertiary-care hospital in Germany during the second and third pandemic waves in fall/winter 2020. METHODS: Between calendar weeks 41/2020 and 1/2021 40% of all positive patient and staff samples (284 total) were subjected to full-length viral genome sequencing. Clusters were defined based on similar genotypes indicating common sources of infection. We integrated phylogenetic, spatial, and temporal metadata to detect nosocomial infections and outbreaks, uncover transmission chains, and evaluate containment measures' effectiveness. RESULTS: Epidemiologic data and contact tracing readily recognize most healthcare-associated patient infections. However, sequencing data reveal that temporally preceding index cases and transmission routes can be missed using epidemiologic methods, resulting in delayed interventions and serially linked outbreaks being counted as independent events. While hospital-associated transmissions were significantly elevated at a moderate rate of community transmission during the second wave, systematic testing and high vaccination rates among staff have led to a substantial decrease in healthcare-associated infections at the end of the second/beginning of the third wave despite high community transmissions. CONCLUSIONS: While epidemiologic analysis is critical for immediate containment of healthcare-associated SARS-CoV-2 outbreaks, integration of genomic surveillance revealed weaknesses in identifying staff contacts. Our study underscores the importance of high testing frequency and genomic surveillance to detect, contain and prevent SARS-CoV-2-associated infections in healthcare settings.

2.
Neuropediatrics ; 53(5): 381-384, 2022 10.
Article in English | MEDLINE | ID: covidwho-1947711

ABSTRACT

The 12 years old male patient presented here suffers from neuronal ceroid lipofuscinoses 2 (CLN2) (MIM# 204500) and receives intracerebroventricular enzyme replacement therapy (ICV-ERT) every 14 days. After the emergence of the coronavirus disease 2019 (COVID-19) pandemic, routine care of children and adolescents with rare chronic diseases has become challenging. Although, in general, children do not develop severe COVID-19, when severe acute respiratory syndrome coronavirus 2 infection was detected by polymerase chain reaction-screening examination in our CLN2 patient before hospital admission for ICV-ERT, he was regarded to be at risk. Upon diagnosis, the patient developed respiratory deterioration symptoms and was admitted to our pediatric intensive care unit to receive oxygen, remdesivir, and steroids. As far as we know, this is the first CLN2 patient receiving intraventricular enzyme therapy with COVID-19 who required intensive care treatment and specific therapy.


Subject(s)
COVID-19 , Neuronal Ceroid-Lipofuscinoses , Adolescent , COVID-19/complications , Child , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Enzyme Replacement Therapy , Humans , Male , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/drug therapy , Oxygen , Tripeptidyl-Peptidase 1
3.
Mycoses ; 65(8): 824-833, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1879087

ABSTRACT

BACKGROUND: In the absence of lung biopsy, there are various algorithms for the diagnosis of invasive pulmonary aspergillosis (IPA) in critically ill patients that rely on clinical signs, underlying conditions, radiological features and mycology. The aim of the present study was to compare four diagnostic algorithms in their ability to differentiate between probable IPA (i.e., requiring treatment) and colonisation. METHODS: For this diagnostic accuracy study, we included a mixed ICU population with a positive Aspergillus culture from respiratory secretions and applied four different diagnostic algorithms to them. We compared agreement among the four algorithms. In a subgroup of patients with lung tissue histopathology available, we determined the sensitivity and specificity of the single algorithms. RESULTS: A total number of 684 critically ill patients (69% medical/31% surgical) were included between 2005 and 2020. Overall, 79% (n = 543) of patients fulfilled the criteria for probable IPA according to at least one diagnostic algorithm. Only 4% of patients (n = 29) fulfilled the criteria for probable IPA according to all four algorithms. Agreement among the four diagnostic criteria was low (Cohen's kappa 0.07-0.29). From 85 patients with histopathological examination of lung tissue, 40% (n = 34) had confirmed IPA. The new EORTC/MSGERC ICU working group criteria had high specificity (0.59 [0.41-0.75]) and sensitivity (0.73 [0.59-0.85]). CONCLUSIONS: In a cohort of mixed ICU patients, the agreement among four algorithms for the diagnosis of IPA was low. Although improved by the latest diagnostic criteria, the discrimination of invasive fungal infection from Aspergillus colonisation in critically ill patients remains challenging and requires further optimization.


Subject(s)
Invasive Pulmonary Aspergillosis , Aspergillus , Cohort Studies , Critical Illness , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Sensitivity and Specificity
4.
Open Forum Infect Dis ; 8(11): ofab509, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526187

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA loads in patient specimens may act as a clinical outcome predictor in critically ill patients with coronavirus disease 2019 (COVID-19). METHODS: We evaluated the predictive value of viral RNA loads and courses in the blood compared with the upper and lower respiratory tract loads of critically ill COVID-19 patients. Daily specimen collection and viral RNA quantification by reverse transcription quantitative polymerase chain reaction were performed in all consecutive 170 COVID-19 patients between March 2020 and February 2021 during the entire intensive care unit (ICU) stay (4145 samples analyzed). Patients were grouped according to their 90-day outcome as survivors (n=100) or nonsurvivors (n=70). RESULTS: In nonsurvivors, blood SARS-CoV-2 RNA loads were significantly higher at the time of admission to the ICU (P=.0009). Failure of blood RNA clearance was observed in 33/50 (66%) of the nonsurvivors compared with 12/64 (19%) survivors (P<.0001). As determined by multivariate analysis, taking sociodemographic and clinical parameters into account, blood SARS-CoV-2 RNA load represents a valid and independent predictor of outcome in critically ill COVID-19 patients (odds ratio [OR; log10], 0.23; 95% CI, 0.12-0.42; P<.0001), with a significantly higher effect for survival compared with respiratory tract SARS-CoV-2 RNA loads (OR [log10], 0.75; 95% CI, 0.66-0.85; P<.0001). Blood RNA loads exceeding 2.51×103 SARS-CoV-2 RNA copies/mL were found to indicate a 50% probability of death. Consistently, 29/33 (88%) nonsurvivors with failure of virus clearance exceeded this cutoff value constantly. CONCLUSIONS: Blood SARS-CoV-2 load is an important independent outcome predictor and should be further evaluated for treatment allocation and patient monitoring.

5.
J Infect ; 83(5): 589-593, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401632

ABSTRACT

INTRODUCTION: The large number of asymptomatic SARS-CoV-2 infections necessitates general screening of employees. We evaluate the performance of a SARS-CoV-2 screening program in asymptomatic healthcare-workers (HCW), utilizing self-sampled gargling-solution and sample pooling for RT-qPCR. METHODS: We conducted a cross-sectional retrospective study to collect real-life data on the performance of a screening-workflow based on automated-pooling and high-throughput qPCR testing over a 3-month-period at the University Hospital Hamburg. RESULTS: Matrix validation reveals that lower limit of detection for SARS-CoV-2 RNA in gargling-solution was 180 copies/mL (5-sample-pool). A total of 55,122 self-collected gargle samples (= 7513 HCWs) was analyzed. The median time to result was 8.5 hours (IQR 7.2-10.8). Of 11,192 pools analyzed, 11,041 (98.7%) were negative, 69 (0.6%) were positive and 82 (0.7%) were invalid. Individual testing of pool participants revealed 57 SARS-CoV-2 previously unrecognized infections. All 57 HCWs were either pre-symptomatic or asymptomatic (prevalence 0.76%,CI95%0.58-0.98%). Accuracy based on HCWs with gargle-solution and NP-swab available within 3-day-interval (N = 521) was 99.5% (CI95%98.3-99.9%), sensitivity 88.9% (CI95%65.3-98.6%) while specificity 99.8% (CI95%98.9-99.9). CONCLUSION: This workflow was highly effective in identifying SARS-CoV-2 positive HCWs, thereby lowering the potential of inter-HCW and HCW-patient transmissions. Automated-sample-pooling helped to conserve qPCR reagents and represents a promising alternative strategy to antigen testing in mass-screening programs.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Delivery of Health Care , Humans , RNA, Viral , Retrospective Studies , Workflow
6.
J Clin Med ; 10(11)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1244046

ABSTRACT

In this study, we directly compared coronavirus disease 2019 (COVID-19) patients hospitalized during the first (27 February-28 July 2020) and second (29 July-31 December 2020) wave of the pandemic at a large tertiary center in northern Germany. Patients who presented during the first (n = 174) and second (n = 331) wave did not differ in age (median [IQR], 59 years [46, 71] vs. 58 years [42, 73]; p = 0.82) or age-adjusted Charlson Comorbidity Index (median [IQR], 2 [1, 4] vs. 2 [0, 4]; p = 0.50). During the second wave, a higher proportion of patients were treated as outpatients (11% [n = 20] vs. 20% [n = 67]), fewer patients were admitted to the intensive care unit (43% [n = 75] vs. 29% [n = 96]), and duration of hospitalization was significantly shorter (median days [IQR], 14 [8, 34] vs. 11 [5, 19]; p < 0.001). However, in-hospital mortality was high throughout the pandemic and did not differ between the two periods (16% [n = 27] vs. 16% [n = 54]; p = 0.89). While novel treatment strategies and increased knowledge about the clinical management of COVID-19 may have resulted in a less severe disease course in some patients, in-hospital mortality remained unaltered at a high level. These findings highlight the unabated need for efforts to hamper severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) transmission, to increase vaccination coverage, and to develop novel treatment strategies to prevent mortality and decrease morbidity.

SELECTION OF CITATIONS
SEARCH DETAIL